
BiOpt: Bilevel Optimization Toolboxes

Shenglong Zhou and Alain B. Zemkoho†

Abstract

To help accelerate the development of numerical toolboxes for bilevel optimization,
BiOpt aims at providing i) a tool to calculate the first, second and third order derivatives
of a single/set-valued function, ii) a tool to plot the graph of an optimal-value function in
the form of ψ(x) = miny{f(x, y)|g(x, y) ≤ 0} and a tool to calculate the function value,
iii) a collection of academic and real-world applications or case studies on the problem
including 24 linear, 138 nonlinear and 11 simple bilevel optimization test examples and
iv) three bilevel optimization solvers based on semi-smooth Newton method. All tools are
programmed via Matlab and will be made freely available online.

Keywords: Bilevel optimization solvers, Set value function, Higher order derivatives

Mathematical Subject Classification: 90C26, 90C30, 90C90

Contents

1 Introduction 2

2 GetDerivatives: A tool to calculate derivatives 2

2.1 Format of derivatives . 2

2.2 How to use GetDerivatives . 4

3 Tools to process an optimal-value function 4

3.1 SolOVF computes the function value . 5

3.2 PlotOVF plots the function . 6

4 Bilevel optimization examples from BOLIB 8

4.1 Nonlinear examples . 8

4.2 Linear examples . 11

4.3 Simple examples . 11

5 BiOpt solvers: SNLLVF, SNKKT and SNQVI 13

5.1 Description of inputs and outputs . 13

5.2 Examples and func . 14

5.2.1 Examples with easy calculations of derivatives 15

5.2.2 Examples with complicated calculations of derivatives 19

5.3 Examples with parameters or extra data . 21

5.4 Importance of pars.xy and pars.lam . 24

5.5 Summary . 25

†School of Mathematics, University of Southampton, Southampton SO17 1BJ, United Kingdom. E-mail:
shenglong.zhou@soton.ac.uk, a.b.zemkoho@soton.ac.uk

1

1 Introduction

The general bilevel optimization problem can take the form

min
x,y

F (x, y)(1.1)

s.t. G(x, y) ≤ 0, H(x, y) = 0, y ∈ S(x),

where the functions G : Rnx × Rny → RnG , H : Rnx × Rny → RnH and y ∈ S(x) define
the upper-level constraints. The set valued mapping S : Rn ⇒ Rm describes the lower-level
optimal solution set, for any upper-level selection x:

(1.2) S(x) := arg min
y
{f(x, y) | g(x, y) ≤ 0, h(x, y) = 0} ,

where g : Rnx ×Rny → Rng and h : Rnx ×Rny → Rnh describe the lower-level constraints. On
the other hand, F : Rnx × Rny → R and f : Rnx × Rny → R denote the upper-and lower-level
objective/cost functions, respectively. Further recall that problem (1.1) as a whole is often
called upper-level problem. We use the fact that H(x, y) = 0 (similarly to h(x, y) = 0) can
be expressed as H(x, y) ≤ 0 and −H(x, y) ≤ 0. Hence, our focus here will be on bilevel
optimization problems of the form

min
x,y

F (x, y)(1.3)

s.t. G(x, y) ≤ 0, S(x) := arg min
y
{f(x, y) : g(x, y) ≤ 0}.

2 GetDerivatives: A tool to calculate derivatives

It is well known that Matlab provides users a function jacobian to compute the Jacobian
matrix of a given single/set-valued function. When it comes to calculate the second order
or third order derivatives of such given function, the usage of jacobian seems not to be
straightforward and thus the computations are quite complicated. In this section, we offer
a tool GetDerivatives whose core function is jacobian with ability to calculate the first,
second and third order derivatives of an input (vector) function. Before to describe how to use
this tool, we need some notational definitions.

2.1 Format of derivatives

Let a ∈ {x, y} with a ∈ Rna . Clearly, na = nx if a = x and na = ny if a = y. Similarly, we
define b, c ∈ {x, y} with b ∈ Rnb , c ∈ Rnc . For a single-valued function F (x, y) : Rnx×Rny → R,
its first and second derivatives are defined as follows,

∇aF (x, y) =

 ∇a1F
...

∇ana
F

 ∈ Rna ,(2.1)

∇2
abF (x, y) =

 ∇
2
a1b1

F · · · ∇2
anab1

F
...

. . .
...

∇2
a1bnb

F · · · ∇2
anabnb

F

 ∈ Rnb×na .(2.2)

2

The third derivative ∇3
abcF (x, y) is given by

∇3
abcF (x, y) =

 ∇
2
bc(∇a1F)

...
∇2

bc(∇ana
F)

 =



∇3
b1c1a1

F · · · ∇3
bnb

c1a1
F

...
. . .

...
∇3

b1cnca1
F · · · ∇3

bnb
cnca1

F
...

. . .
...

∇3
b1c1ana

F · · · ∇3
bnb

c1ana
F

...
. . .

...
∇3

b1cncana
F · · · ∇3

bnb
cncana

F


∈ Rnanc×nb .(2.3)

For a set-valued function G : Rnx × Rny → RnG , its first and second derivatives are given by,

∇aG(x, y) =

 ∇aG1
...

∇aGnG

 =

 ∇a1G1 · · · ∇ana
G1

...
. . .

...
∇a1GnG · · · ∇ana

GnG

 ∈ RnG×na ,(2.4)

∇2
abG(x, y) =

 ∇2
abG1
...

∇2
abGnG

 =



∇2
a1b1

G1 · · · ∇2
anab1

G1

...
. . .

...
∇2

a1bnb
G1 · · · ∇2

anabnb
G1

...
. . .

...
∇2

a1b1
GnG · · · ∇2

anab1
GnG

...
. . .

...
∇2

a1bnb
GnG · · · ∇2

anabnb
GnG


∈ R(nGnb)×na .(2.5)

The third derivative ∇3
abcG(x, y) is given by

∇3
abcG(x, y) =

 ∇3
abcG1

...
∇3

abcGnG

 =

 ∇2
bc(∇a1

G1) · · · ∇2
bc(∇ana

G1)
...

. . .
...

∇2
bc(∇a1

GnG
) · · · ∇2

bc(∇ana
GnG

)

 ∈ RnGnc×nanb

=



∇3
b1c1a1

G1 · · · ∇3
bnb

c1a1
G1 · · · ∇3

b1c1aan
G1 · · · ∇3

bnb
c1aan

G1

...
. . .

... · · ·
...

. . .
...

∇3
b1cnca1

G1 · · · ∇3
bnb

cnca1
G1 · · · ∇3

b1cncaan
G1 · · · ∇3

bnb
cncaan

G1

...
. . .

...
∇3

b1c1a1
GnG

· · · ∇3
bnb

c1a1
GnG

· · · ∇3
b1c1aan

GnG
· · · ∇3

bnb
c1aan

GnG

...
. . .

... · · ·
...

. . .
...

∇3
b1cnca1

GnG
· · · ∇3

bnb
cnca1

GnG
· · · ∇3

b1cncaan
GnG

· · · ∇3
bnb

cncaan
GnG


(2.6)

Note that the formats of derivatives ∇aF (x, y) and ∇abF (x, y) of F and ∇aG(x, y) are defined
in a standard way, while the storage of ∇abcF (x, y), ∇ab(x, y) and ∇abcG(x, y) in matrix might
differ with methods from literature. We adopt this way because it allows us to use these
formats clearly in terms of numerical computations. Since a, b, c ∈ {x, y}, we have

ab ∈ {xx, xy, yx, yy}, abc ∈ {xxx, xxy, xyx, xyy, yxx, yxy, yyx, yyy}.

3

2.2 How to use GetDerivatives

Open folder GetDerivatives which contains 2 Matlab m-files: GetDerivatives.m and demon.m.
Now we are ready to describe how to use this tool. The basic citation is

DFunc = GetDerivatives(Func,dim,keyxy)

[DFunc,symDFunc] = GetDerivatives(Func,dim,keyxy)

Corresponding inputs and outputs are described as in Table 1.

Inputs:

DFunc : The input function handle, Rnx×ny → Rnf with nf ≥ 1.

dim : = [nx ny], the dimensions of variables x ∈ Rnx and y ∈ Rny .

keyxy : ∈ {’x’,’y’,’xx’,’xy’,’yx’,’yy’,’xxx’,’xxy’,’xyx’,’xyy’,
’yxx’,’yxy’,’yyx’,’yyy’}, derivative of DFunc w.r.t. keyxy.

Outputs:

DFunc: Derivative of DFunc w.r.t. keyxy, a function handle.

symDFunc: Derivative of DFunc w.r.t. keyxy, a symbolic function handle.

Table 1: Inputs and outputs of GetDerivatives.m.

Type (or copy) the following codes in a new command window (or alternatively you can
simply open demon.m and run it):

clc; clear; close all; % line 1
Func = @(x,y)([sin(x)+sum(y.^3); y.^norm(x,1)]); % line 2
dim = [2 3]; % line 3
keyxy = ’xy’; % line 4
DFunc = GetDerivatives(Func, dim, keyxy); % line 5
Dkeyxy = DFunc(rand(dim(1),1),rand(dim(2),1)) % line 6

Line 2 defines the function handle Func as[
sin(x1) +

3∑
i=1

y3i , sin(x2) +
3∑

i=1

y3i , y
‖x‖1
1 , y

‖x‖1
2 , y

‖x‖1
3

]>
.

In line 5, DFunc is the derivative w.r.t. to xy. To see other derivatives, just pick one keyxy from
{’x’,’y’,’xx’,’xy’,’yx’,’yy’,’xxx’, ’xxy’,’xyx’,’xyy’,’yxx’,’yxy’,’yyx’,’yyy’}.

3 Tools to process an optimal-value function

BiOpt also provides a folder OptValFunc which contains two tools to process an optimal-value
function in the form of

ψ(x) = min
y∈Rny

{f(x, y) | g(x, y) ≤ 0},(3.1)

4

where f : Rnx × Rny → R and g : Rnx × Rny → Rng . It highly suggests that for each fixed
x, both f(x, y) and g(x, y) are convex functions with respect to y, so that (3.1) is a convex
program which admits a unique optimal objective function value. In other words, if either
f(x, y) or g(x, y) is non-convex , then these two tools may present incorrect (or even fail to
generate) results as the optimal objective function value is not a singleton.

3.1 SolOVF computes the function value

Open folder OptValFunc in which there are 2 Matlab m-files: ‘SolOVF.m’ (the main function
handle) and ‘demonSol.m’ (to do demonstration). This tool SolOVF solves (3.1) with providing
the optimal solution y∗ and the optimal objective function value ψ(x) = f(x, y∗) for a given
x. The citation of ‘SolOVF.m’ has forms as

out = SolOVF(ny,objf,cong,varx),

out = SolOVF(ny,objf,cong,varx,yo).

Their inputs and outputs are described as in Table 3.

Inputs:

ny : Dimension of y ∈ Rny .

funf : Function handle describes the objective function, f(x, y) : Rnx×ny → R.

cong : Function handle describes the inequality constraints, g(x, y) : Rnx×ny →
Rng with ng ≥ 1.

varx : The given variable x.

yo: Starting point of y. This is optional, with default one yo=zeros(ny,1);.

Outputs:

out.xvar: The given variable x

out.yopt: The optimal solution.

out.fopt: The optimal objective function value.

Table 3: Inputs and outputs of SolOVF.

Now, take one simple example to illustrate the usage of SolOVF. Consider

ψ(x) = min
y∈Rny

{
‖x‖2 + ‖y‖2 − x>Qy

∣∣∣ ‖y‖2 ≤ 25,

nx∑
i=1

xi +

ny∑
i=1

yi ≤ 5

}
,(3.2)

with x ∈ Rnx and Q ∈ Rnx×ny . Type (or copy) the following codes in a new command window
(or alternatively you can simply open demonSol.m and run it):

clc; clear; close all; % line 1
dim = [20 40]; % line 2
rng(’default’); rng(1); % line 3
Q = randi(10,dim)/10; % line 4
objf = @(x,y)(sum(x.^2)-sum(x.*(Q*y))+sum(y.^2)); % line 5
cong = @(x,y)[sum(x)+sum(y)-5; y.^2-25]; % line 6
out = SolOVF(dim(2),objf,cong,randn(dim(1),1)) % line 7

5

The second line gives the dimensions dim= [nx ny] = [10 20]. The output is

out =

struct with fields:

yopt: [40x1 double]

fopt: 3.5189

varx: [20x1 double]

For tool SolOVF, there is no restriction on the dimensions as long as nx ≥ 1, ny ≥ 1. Of course,
the larger dimensions are, the much longer computational time this tool will cost. One can
also change the dimensions to see other outputs.

Inputs:

dim : = [nx ny], the dimensions of variables x ∈ Rnx and y ∈ Rny .

nx ∈ {1, 2}, other choices of nx will fail this code. ny ∈ {0, 1, 2, 3, · · · }.
funf : Function handle describes the objective function, f(x, y) : Rnx×ny → R.

cong : Function handle describes the inequality constraints, g(x, y) : Rnx×ny →
Rng with ng ≥ 1.

range : The range of x when plotting ψ(x). This is optional.

If nx = 1, range = [xmin, xmax]. Default one, range= [−1, 1];

If nx = 2, range = [x1min, x1max; x2min, x2max];

Default one, range= [−1, 1;−1, 1];

nox: The number of samples x. This is optional.

Default one nox = 100 when nx = 1, nox = 20 when nx = 2,

NOTE: The larger nox is, the longer the time is taken but the more

accurate the graph will be.

Outputs:

out.succ: =1 plots successfully, =0 fails to plot.

out.xvar: The variable with nox elements.

∈ R1×nox when nx = 1 , ∈ Rnox×nox×2 when nx = 2.

out.yopt: The optimal solutions, i.e., argminy{f(x, y)|g(x, y) ≤ 0}.
∈ Rny×nox when nx = 1 , ∈ Rnox×nox×ny when nx = 2.

out.fopt: The optimal objective function values with out.fopt∈ Rnox.

Table 5: Inputs and outputs of PlotOVF.

3.2 PlotOVF plots the function

Again open folder OptValFunc where one can find 2 Matlab m-files: ‘PlotOVF.m’ (the main
function handle) and ‘demonPlot.m’ (to do demonstration). This tool PlotOVF presents the
graph of (3.1) in two and three dimensional space and outputs the calculated optimal solutions
and optimal objective function values. Thus for the purpose of visualization, the dimension
nx of x must be 1 (for two dimensional space) or 2 (for three dimensional space). And ny ∈
{0, 1, 2, 3, · · · }. The citation of ‘PlotOVF.m’ has forms as

out = PlotOVF(dim,funf,cong),

out = PlotOVF(dim,funf,cong,range),

out = PlotOVF(dim,funf,cong,range,nox).

6

Their inputs and outputs are described as in Table 5. Again we use Example 3.2 to illustrate
the usage of PlotOVF. Type (or copy) the following codes in a new command window (or
alternatively you can simply open demonPlot.m and run it):

clc; clear; close all; % line 1
dim = [1 1]; % line 2
rng(’default’); rng(1); % line 3
Q = randi(10,dim)/10; % line 4
objf = @(x,y)(sum(x.^2)-sum(x.*(Q*y))+sum(y.^2)); % line 5
cong = @(x,y)[sum(x)+sum(y)-5; y.^2-25]; % line 6
range = [-10*ones(dim(1),1) 10*ones(dim(1),1)]; % line 7
out = PlotOVF(dim,objf,cong,range,100); % line 8

The second line gives the dimensions dim= [nx ny] = [1 1]. The plot range of x-axis
is [−10 10] in line 7. The last input 100 in line 8 defines the number of x values in the
range [−10 10]. Namely, there is 100 points x will be computed to derive ψ(x) and the
graph. Corresponding plots are presented in Figure 1, where the left (resp. right) sub-figure
presents the optimal objective function value ψ(x) (resp. optimal solution y∗(x)). Namely,
ψ(x) = f(x, y∗(x)).

-10 -5 0 5 10

x

20

40

60

80

100

120

140

(x
)

(x) = min
y
{x2 - (x*y)/2 + y2 |x + y - 5 0,y2 - 25 0 }

-10 -5 0 5 10

x

-5

-4

-3

-2

-1

0

1

y* (x
)

y*(x) = argmin
y
 { f(x,y) | g(x,y) 0 }

Figure 1: Optimal objective function value ψ(x) and optimal solution y∗(x) in R2.

One can also change the dimensions as dim= [2 1] and

out = PlotOVF(dim,objf,cong,range,20);

This means there are 20 x values in the range [−10 10] will be considered. Since nx =dim(1)=
2, there are 400 = 20 × 20 points x in the square [−10 10] × [−10 10] will be computed to
derive ψ(x) and the graph (see Figure 2). It is worth mentioning that, in order to visualize,
the graph of optimal solution y∗(x) can be only plotted when ny = 1. In other words, when
ny 6= 1, only one graph on ψ(x) will be plotted.

7

0
-10

50

100

150(x
)

10

200

(x) = min
y
{x12 - (4*x2*y)/5 - (x1*y)/2 + x22 + y2 |x1 + x2 + y - 5 0,y2 - 25 0 }

250

x1

50

x2

0
-5

10 -10

-6
-10

-4

-2

y* (x
)

x1

0

0

10

y*(x) = argmin
y
 { f(x,y) | g(x,y) 0 }

5

2

x2

0
-5

10 -10

Figure 2: Optimal objective function value ψ(x) and optimal solution y∗(x) in R3.

4 Bilevel optimization examples from BOLIB

All examples are taken from BOLIB library [10]. Open folder BOLIBExamples which contains
following files:

• One text file readme.txt describing how to use BOLIB library.

• Three Matlab m-files:

– startup.m. Run this file to add the path to current folder and all sub-folders.

– demon1.m demonstrating one way to call an example from BOLIB.

– demon2.m demonstrating another way to call an example from BOLIB.

• One folder Examples in which there are some files as follows.

– Folder Nonlinear containing 138 nonlinear bilevel optimization test examples;

– Folder Linear containing 24 linear bilevel optimization test examples;

– Folder Simple containing 11 Simple bilevel optimization test examples;

– One Matlab m-file InfomAllExamp.m recording information of all 173 test examples,
such as the dimensions, best known optimal upper and lower-level objective function
values, or the starting points.

All examples are coded through Matlab and saved in m-files. The codes for each example
share the same pattern so that they are easy to be called. We use files in folder Nonlinear to
illustrate the creation of an m-file and its usage.

4.1 Nonlinear examples

Nonlinear folder contains 138 Matlab m-files. Each one specifies a nonlinear bilevel op-
timization test example, basically named by a combination of authors’ surnames, year of
publication, and when necessary, the order of the example in the corresponding reference,

8

see Figure 3. For example, as in following figure (showing a partial list of the examples),
AiyoshiShimizu1984Ex2.m stands for the Example 2 considered by Aiyoshi and Shimizu in
1984, see [1] for more details.

Figure 3: BOLIB examples.

Now we describe the inputs and outputs for all m-files which have a uniform citation form,

w = example_name(x,y,keyf,keyxy).

For the inputs, we have

x ∈ Rnx ,

y ∈ Rny ,

keyf ∈ {‘F’,‘G’,‘f’,‘g’},
keyxy ∈ {[], ‘x’,‘y’,‘xx’,‘xy’,‘yy’},

where ‘F’, ‘G’, ‘f’, and ‘g’ respectively stand for the four functions involved in (1.3). ‘x’

and ‘y’ represent the first order derivative with respect to x and y, respectively. Finally,
‘xx’, ‘xy’, and ‘yy’ correspond to the second order derivative of the function F , G, f , and
g, with respect to xx, xy, and yy, respectively. For the outputs, w=example name(x,y,keyf)

or w=example name(x,y,keyf,[]) returns the function value of keyf. When keyxy 6= [], it
returns the first or second order derivative of keyf with respect to choice of keyxy as described
above. We summarize the input-inputs scenarios in the following table:

keyf\keyxy [] ‘x’ ‘y’ ‘xx’ ‘xy’ ‘yy’

‘F’ F (x, y) ∇xF (x, y) ∇yF (x, y) ∇2
xxF (x, y) ∇2

xyF (x, y) ∇2
yyF (x, y)

‘G’ G(x, y) ∇xG(x, y) ∇yG(x, y) ∇2
xxG(x, y) ∇2

xyG(x, y) ∇2
yyG(x, y)

‘f’ f(x, y) ∇xf(x, y) ∇yf(x, y) ∇2
xxf(x, y) ∇2

xyf(x, y) ∇2
yyf(x, y)

‘g’ g(x, y) ∇xg(x, y) ∇yg(x, y) ∇2
xxg(x, y) ∇2

xyg(x, y) ∇2
yyg(x, y)

Table 7: Inputs of keyf and keyxy

9

For the dimension of w in each scenario, see (2.1)–(2.2). If nG = 0 (or ng = 0), all outputs
related to G (or g) should be empty, namely, w = []. Let us look at some specific usage:

1) w = example name(x,y,‘F’) or w = example name(x,y,‘F’,[]) returns the function
value of F , i.e., w = F (x, y); this is similar for G, f , and g;

2) w = example name(x,y,‘F’,‘x’) returns the partial derivative of F with respect to x,
i.e., w = ∇xF (x, y); this is similar for G, f , and g;

3) w = example name(x,y,‘G’,‘y’) returns the Jacobian matrix of G with respect to y,
i.e., w = ∇yG(x, y); this is similar for F , f , and g;

4) w = example name(x,y,‘f’, ‘xy’) returns the Hessian matrix of f with respect to xy,
i.e., w = ∇2

xyf(x, y); this is similar for F , G, and g;

5) w = example name(x,y,‘g’,‘yy’) returns the second order derivative of g with respect
to yy, i.e., w = ∇2

yyg(x, y); this is similar for F , G, and f .

Example 4.1 Shimizu et al. (1997), see [9], considered the bilevel program (1.3) with

F (x, y) := (x− 5)2 + (2y + 1)2,
f(x, y) := (y − 1)2 − 1.5xy,

g(x, y) :=

 −3x+ y + 3
x− 0.5y − 4
x+ y − 7

 .
Clearly, nx = 1, ny = 1, nG = 0, ng = 3. The m-file in NonlinearExamples folder is named
by ShimizuEtal1997a (i.e., exmaple name= ShimizuEtal1997a), which was coded through
Matlab as in Table 8. If we are given some inputs (as in left column of the table below), then
ShimizuEtal1997a will return us corresponding results as in the right column of Table 9.

function w=ShimizuEtal1997a(x,y,keyf,keyxy)

if nargin<4 || isempty(keyxy)

switch keyf

case ‘F’; w = (x-5)^2+(2*y+1)^2;

case ‘G’; w = [];

case ‘f’; w = (y-1)^2-1.5*x*y;

case ‘g’; w = [-3*x+y+3; x-0.5*y-4; x+y-7];

end

else

switch keyf

case ‘F’

switch keyxy

case ‘x’ ; w = 2*(x-5);

case ‘y’ ; w = 4*(2*y+1);

case ‘xx’; w = 2;

case ‘xy’; w = 0;

case ‘yy’; w = 8;

end

case ‘G’

switch keyxy

case ‘x’ ; w = [];

10

case ‘y’ ; w = [];

case ‘xx’; w = [];

case ‘xy’; w = [];

case ‘yy’; w = [];

end

case ‘f’

switch keyxy

case ‘x’ ; w = -1.5*y;

case ‘y’ ; w = 2*(y-1)-1.5*x;

case ‘xx’; w = 0;

case ‘xy’; w = -1.5;

case ‘yy’; w = 2;

end

case ‘g’

switch keyxy

case ‘x’ ; w = [-3; 1; 1];

case ‘y’ ; w = [1;-0.5; 1];

case ‘xx’; w = [0; 0; 0];

case ‘xy’; w = [0; 0; 0];

case ‘yy’; w = [0; 0; 0];

end

end

end

end

Table 8: Function description of ShimizuEtal1997a.m.

Inputs Outputs
x = 4 x = 4

y = 0 y = 0

F = ShimizuEtal1997a(x,y,’F’,[]) F = 2

Gy = ShimizuEtal1997a(x,y,’G’,’y’) Gy = []

fxy = ShimizuEtal1997a(x,y,’f’,’xy’) fxy = -1.5

gyy = ShimizuEtal1997a(x,y,’g’,’yy’) gyy = [0;0;0]

Table 9: Outputs of ShimizuEtal1997a.m.

4.2 Linear examples

Linear folder contains 24 Matlab m-files. Each one specifies a linear bilevel optimization test
example. We say a bilevel optimization problem (1.3) is linear if all its involved functions
(F,G, f, g) are linear. Otherwise it is nonlinear. The rule of naming each example and the
citation of each m-file are the same as those mentioned above for nonlinear examples.

4.3 Simple examples

Simple bilevel optimization is defined by

min
y

F (y)(4.1)

s.t. G(y) ≤ 0, y ∈ S := arg min
y
{f(y) : g(y) ≤ 0}.

11

Simple folder contains 11 Matlab m-files. Each one specifies a simple bilevel optimization test
example. The rule of naming each example and the citation of each m-file are the same as
those mentioned above for nonlinear examples. Namely,

w = example_name(x,y,keyf,keyxy).(4.2)

As described in [10] that despite the lack of variable x in (4.1), for the sake of unifying the
inputs of the function handle as in (4.2), we still treat it as an input. Here, for all simple
bilevel examples, we input x as a scalar. In this way, x has no impact on the example itself.
Now we use one example to illustrate this.

Example 4.2 Franke et al. (2018), see [6], considered the bilevel program (1.3) with

F (y) := −y2
f(y) := y3

g(y) :=

 y21 − y3
y21 + y22 − 1

−y3


Clearly, ny = 3, nG = 0, ng = 3. We let nx = 1. The m-file is named by FrankeEtal2018Ex513

(i.e., exmaple_name = FrankeEtal2018Ex513), which was coded through Matlab as follows.

function w=FrankeEtal2018Ex513(x,y,keyf,keyxy)

if nargin<4 || isempty(keyxy)

switch keyf

case ‘F’; w = -y(2);

case ‘G’; w = [];

case ‘f’; w = y(3);

case ‘g’; w = [y(1)^2-y(3); y(1)^2+y(2)^2-1; -y(3)];

end

else

switch keyf

case ‘F’

switch keyxy

case ‘x’ ; w = 0;

case ‘y’ ; w = [0; -1; 0];

case ‘xx’; w = 0;

case ‘xy’; w = zeros(3,1);

case ‘yy’; w = zeros(3,3);

end

case ‘G’

switch keyxy

case ‘x’ ; w = [];

case ‘y’ ; w = [];

case ‘xx’; w = [];

case ‘xy’; w = [];

case ‘yy’; w = [];

end

case ‘f’

switch keyxy

case ‘x’ ; w = 0;

case ‘y’ ; w = [0; 0; 1];

12

case ‘xx’; w = 0;

case ‘xy’; w = zeros(3,1);

case ‘yy’; w = zeros(3,3);

end

case ‘g’

switch keyxy

case ‘x’ ; w = zeros(3,1);

case ‘y’ ; w = [2*y(1) 0 -1; 2*y(1) 2*y(2) 0; 0 0 -1];

case ‘xx’; w = zeros(3,1);

case ‘xy’; w = zeros(9,1);

case ‘yy’; w = [2 0 0;0 0 0;0 0 0;2 0 0; 0 2 0;zeros(4,3)];

end

end

end

end

5 BiOpt solvers: SNLLVF, SNKKT and SNQVI

In this section, we introduce three bilevel optimization solvers provided in this BiOpt toolboxes.
They are SNLLVF, SNKKT and SNQVI, which are programmed based on semismooth Newton
method. Three solves share similar algorithmic frameworks but are constructed from different
perspectives. Details about their constructions can be found in [5, 12, 11], respectively. Their
citations have the same format:

(5.1) Out = solver_name(func,dim,pars),

which is also specified as

Out = SNLLVF(func,dim,pars);

Out = SNKKT(func,dim,pars);

Out = SNQVI(func,dim,pars);

5.1 Description of inputs and outputs

In order to make use of those solvers, the first issue confronted us is the inputs and the output,
which are described as in Table 11.

Inputs:
dim : A row/column vector with 4 elements, i.e., dim= [nx ny nG ng].
func : A function handle/a string must contain 4 functions [F G f g],[required]

preferably, including 1st and 2nd order derivatives of F,G, f, g, [optional]
or 3rd order derivatives of f and g. [optional]

pars : Starting point, parameters and other information.
All are optional except for the last pars.data.

pars.xy : The starting point for x and y, i.e.,pars.xy= [x0; y0].
It is a COLUMN vector whose dimension is (nx + ny).
Default one pars.xy=zeros(nx + ny, 1).

pars.lam : A positive penalty parameter, default one pars.lam=1.
NOTE: it is an important parameter.
Different choices may produce different results.

13

pars.check: Check the completeness of all 1st,2nd order derivatives
of F,G, f and g or 3rd order derivatives of f and g.
Do (resp. do not) check if pars.check=1[default] (resp. =0).

pars.iteron: Show results for each iteration if pars.iteron=1[default].
Don’t show results for each iteration if pars.iteron=0.

pars.maxit: Maximum iteration number, default one pars.maxit=2000.
pars.tol: Tolerance for the stopping criteria, default one pars.tol=1e-8.
pars.draw: A (resp. no) graph will be drawn if pars.draw=1 (resp. =0[default]).
pars.data: This extra data is relied on the example that will be solved.

If one example does not need extra data, then no need pars.data.
Otherwise, input the data. The latter case means nargin(func)=5.

pars.keep: This is only valid when pars.check=1. Keep (resp. delete) all calculated
derivatives in DerivativesFile folder if pars.keep=1 (resp.=0 [default]).

Outputs:
Out.x: Solution x.
Out.y: Solution y.
Out.F: Upper level objective function value.
Out.G: Upper level constraint.
Out.f: Lower level objective function value.
Out.g: Lower level constraint.
Out.time: CPU time.
Out.iter: Number of iterations.
Out.error: Error.

Table 11: Inputs and outputs of SNLLVF, SNKKT and SNQVI.

5.2 Examples and func

As shown in [5, 12, 11], besides using functions F,G, f and g themselves, SNLLVF, SNKKT and
SNQVI make use of their different order derivatives, which are summarized in Table 12. All of
them compute the 1st and 2nd order derivatives, whilst SNKKT need calculate the 3rd order
derivatives of f and g, and SNQVI need the 3rd order derivative of f .

SNLLVF SNKKT SNQVI

‘F’ 1st, 2nd 1st, 2nd 1st, 2nd

‘G’ 1st, 2nd 1st, 2nd 1st, 2nd

‘f’ 1st, 2nd 1st, 2nd, 3rd 1st, 2nd, 3rd

‘g’ 1st, 2nd 1st, 2nd, 3rd 1st, 2nd

Table 12: Oder of derivatives used by SNLLVF, SNKKT and SNQVI.

To solve a bilevel example, the input function handle (or a string) func in (5.1) has a
unified format

func = @(x,y,keyf,keyxy)example_name(x,y,keyf,keyxy).

It should include information of at least four functions F,G, f and g, and preferably their
derivatives based on Table 12. However, some examples have very complicated 2nd or 3rd
order derivatives, which makes the construction of func difficult. Therefore, to ease the usage

14

of these three solvers, the construction of the input func is flexible. But the basic rule is that
the more information you put into func, the much faster the solvers run. We explain this
by using a few examples. Some have simple calculations of all derivatives and some involves
functions with very complicated structures.

5.2.1 Examples with easy calculations of derivatives

Example 5.1 Dempe and Dutta 2012 defined Example 2.4 [4] as follows

F (x, y) := (x− 1)2 + y2

f(x, y) := x2y
g(x, y) := y2.

a) The first way. The simplest way to construct the file func is described in Table 13.

function w=DempeDutta2012Ex24_ver1(x,y,keyf,keyxy)

if nargin<4 || isempty(keyxy)

switch keyf

case ‘F’; w = (x-1)^2 + y^2;

case ‘G’; w = [];

case ‘f’; w = x^2*y;

case ‘g’; w = y^2;

end

end

Table 13: Function description of DempeDutta2012Ex24 ver1.m.

Note that in Table 13, despite that there is no G, we still need the information of G with
defining G = []. Save this into a Matlab m-file and name it as DempeDutta2012Ex24 ver1.m.
In this way, only functions themselves are given, while their derivatives are missing. However,
as described before, SNLLVF, SNKKT and SNQVI need derivatives in Table 12. Therefore, to make
solvers work normally, we need check the completeness of all derivatives of input functions.
This can be done by setting

pars.check = 1.

Each solver has the ability to check the completeness of all derivatives if you set pars.check=1.
Now to solve Example 5.1, type (or copy) the following codes in a new command window and
run it (Or run demon1stway.m to see one of solvers to solve Example 5.1).

clc; clear; close all; % line 1
ExName = ’DempeDutta2012Ex24_ver1’; % line 2
func = str2func(ExName); % line 3
dim = [1 1 0 1]; % line 4
pars.xy = [1;1]; % line 5
pars.lam = 1; % line 6
pars.check = 1; % line 7
pars.keep = 1; % line 8
Solvers = {’SNLLVF’,’SNQVI’,’SNKKT’}; % line 9
SolNo = 1; % choose the solve’ % line 10

15

solver = str2func(Solvers{SolNo}); % line 11
Out = solver(func, dim, pars); % line 12

We would like to describe the function of each line in above codes.

• In line 3, it defines func as a function handle, namely,

func = @(x,y,keyf,keyxy)DempeDutta2012Ex24_ver1(x,y,keyf,keyxy).

• In line 5, the starting points are given by pars.xy. This is optional.

• In line 6, pars.lam is an important parameter. Despite that pars.lam is an optional
parameter with default value 1 (see Table 11), it is highly suggested that users adjust
this parameter for different problems to pursuit better solutions.

• In line 7, since the file DempeDutta2012Ex24 ver1.m has incomplete information, we
value pars.check = 1 to check (or to calculate) all derivatives that will be used by one
of solvers: SNLLVF, SNKKT and SNQVI.

• In line 8, pars.keep = 1 means that all calculated derivatives’ files will be kept after one
solver solving the problem. If pars.keep = 0, then all calculated derivatives’ files will be
deleted. As described in Table 11, pars.keep only makes sense when pars.check = 1.
In fact, if one m-file includes all derivatives, then there is no point to check the com-
pleteness and thus set pars.check = 0. Because of this, no derivatives’ files will be
created. By contrast, if one m-file has some derivatives missing, (e.g, ∇xf is missing),
then pars.check = 1 reminds the solver to calculate ∇xf and store it in a new m-file
’fx.m’. After solving the problem, pars.keep = 0 (resp. pars.keep = 1) makes the
solver delete (resp. keep) the file ’fx.m’.

• In lines 10 and 11, we choose the solve SNLLVF to solve this problem. One can change
another solver just by altering SolNo = 2 or SolNo = 3 in line 10. In fact, to simplify
the codes, one could replace lines 9 − 12 by following line

Out1 = SNLLVF(func, dim, pars);

Of course, the checking procedure will take some time before it solve the example. So to
save time, one also could construct the function file with putting more information, which gives
rise to the second way.

b) The second way. This way is exact same as that defines examples in BOLIB (see
Section 4). So the construction of the file func is presented in Table 15, where all 1st and 2nd
order derivatives are given. In this way, according to Table 12, solver SNLLVF no longer need
the checking procedure any more, but SNKKT (resp. SNQVI) still need compute the 3rd order
derivatives of f and g (resp. f).

function w=DempeDutta2012Ex24_ver2(x,y,keyf,keyxy)

if nargin<4 || isempty(keyxy)

switch keyf

case ‘F’; w = (x-1)^2+y^2;

16

case ‘G’; w = [];

case ‘f’; w = x^2*y;

case ‘g’; w = y^2;

end

else

switch keyf

case ‘F’

switch keyxy

case ‘x’ ; w = 2*(x-5);

case ‘y’ ; w = 2*y;

case ‘xx’; w = 2;

case ‘xy’; w = 0;

case ‘yy’; w = 2;

end

case ‘G’

switch keyxy

case ‘x’ ; w = [];

case ‘y’ ; w = [];

case ‘xx’; w = [];

case ‘xy’; w = [];

case ‘yy’; w = [];

end

case ‘f’

switch keyxy

case ‘x’ ; w = 2*x*y;

case ‘y’ ; w = x^2;

case ‘xx’; w = 2*y;

case ‘xy’; w = 2*x;

case ‘yy’; w = 2;

end

case ‘g’

switch keyxy

case ‘x’ ; w = 0;

case ‘y’ ; w = 2*y;

case ‘xx’; w = 0;

case ‘xy’; w = 0;

case ‘yy’; w = 2;

end

end

end

end

Table 15: Function description of DempeDutta2012Ex24 ver2.m.

To solve Example 5.1, type/copy the following codes in a new command window and run it
(Or run demon2ndway.m to see one of solvers to solve Example 5.1).

clc; clear; close all; % line 1
func = ’DempeDutta2012Ex24_ver2’; % line 2
dim = [1 1 0 1]; % line 3
pars.check = 0; % line 4
Out1 = SNLLVF(func, dim, pars); % line 5

17

pars.check = 1; % line 6
pars.keep = 0; % line 7
Out2 = SNQVI(func, dim, pars); % line 8

Here, line 2 defines func as a string, which is also allowed (based on Table 11) as long as the
there is a Matlab m-file with name DempeDutta2012Ex24 ver2.m. Since the m-file has all 1st
and 2nd order derivatives but without 3rd order derivatives of f and g, we put pars.check = 0

for SNLLVF while set pars.check = 1 for SNQVI.

c) The third way. This way to construct the function file is to input all information
described in Table 12. The construction of the function is presented in Table 18. Note that
in Table 18, if the 3rd derivative is a zero scalar (or matrix), we could just set it as an empty
variable to save the storage of the computer. To solve Example 5.1, type (or copy) the following
codes in a new command window and run it (Or run demon3rdway.m to see solvers to solve
Example 5.1).

clc; clear; close all; % line 1
func = ’DempeDutta2012Ex24_ver3’; % line 2
dim = [1 1 0 1]; % line 3
pars.check = 0; % line 4
Out1 = SNLLVF(func, dim, pars); % line 5
Out2 = SNQVI(func, dim, pars); % line 6
Out3 = SNKKT(func, dim, pars); % line 7

Since DempeDutta2012Ex24 ver3.m has all derivatives in Table 12, we set pars.check = 0

for SNLLVF, SNKKT and SNQVI to remind them to skip the checking procedure, which of course
fastens the computation.

function w=DempeDutta2012Ex24_ver3(x,y,keyf,keyxy)

if nargin<4 || isempty(keyxy)

switch keyf

case ‘F’; w = (x-1)^2+y^2;

case ‘G’; w = [];

case ‘f’; w = x^2*y;

case ‘g’; w = y^2;

end

else

switch keyf

case ‘F’

switch keyxy

case ‘x’ ; w = 2*(x-5);

case ‘y’ ; w = 2*y;

case ‘xx’; w = 2;

case ‘xy’; w = 0;

case ‘yy’; w = 2;

end

case ‘G’

switch keyxy

case ‘x’ ; w = [];

18

case ‘y’ ; w = [];

case ‘xx’; w = [];

case ‘xy’; w = [];

case ‘yy’; w = [];

end

case ‘f’

switch keyxy

case ‘x’ ; w = 2*x*y;

case ‘y’ ; w = x^2;

case ‘xx’; w = 2*y;

case ‘xy’; w = 2*x;

case ‘yy’; w = 2;

case ‘yxx’; w = 2;

case ‘yxy’; w = 0;

case ‘yyy’; w = 0;

end

case ‘g’

switch keyxy

case ‘x’ ; w = 0;

case ‘y’ ; w = 2*y;

case ‘xx’; w = 0;

case ‘xy’; w = 0;

case ‘yy’; w = 2;

case ‘yxx’; w = [];

case ‘yxy’; w = [];

case ‘yyy’; w = [];

end

end

end

end

Table 18: Function description of DempeDutta2012Ex24 ver3.m.

5.2.2 Examples with complicated calculations of derivatives

When the example involves some functions with complicated calculations of derivatives, SNLLVF,
SNKKT and SNQVI also enable users to create the input function m-file in an easier way.

d) The fourth way. In this way, users could input simple derivatives of some functions
while leave complicated derivatives blank. And those blank derivatives will be calculated by
solvers themselves.

Example 5.2 Lu, Deb and Sinha [8] defined Example LuDebSinha2016b_ver4 by,

F (x, y) := (x− 0.5)2 + (y − 1)2

G(x, y) := [−x, x− 1,−y, y − 2]>

f(x, y) := 2− exp

[
−
(

1.5y − x
0.055

)0.4
]
− 0.8 exp

[
−
(

2y − 3 + x

0.5

)2
]

This example has three simple functions F,G and g, while has a complicated one f . The
construction of the input file func can be done by Table 19.

19

function w = SinhaMaloDeb2014TP9_ver4(x,y,keyf,keyxy)

if nargin<4 || isempty(keyxy)

switch keyf

case ‘F’; w = (x-0.5)^2+(y-1)^2;

case ‘G’; w = [-x; x-1; -y; y-2];

case ‘f’; a = (1.5*y-x)/0.055;’
w = 2-exp(-a^0.4)-0.8*exp(-((2*y+x-3)/0.5)^2);

case ‘g’; w = [];

end

else

switch keyf

case ‘F’

switch keyxy

case ‘x’ ; w = 2*(x-0.5);

case ‘y’ ; w = 2*(y-1);

case ‘xx’; w = 2;

case ‘xy’; w = 0;

case ‘yy’; w = 2;

end

case ‘G’

switch keyxy

case ‘x’ ; w = [-1;1;0;0];

case ‘y’ ; w = [0;0;-1;1];

case ‘xx’; w = zeros(4,1);

case ‘xy’; w = zeros(4,1);

case ‘yy’; w = zeros(4,1);

end

case ‘g’

switch keyxy

case ‘x’ ; w = [];

case ‘y’ ; w = [];

case ‘xx’; w = [];

case ‘xy’; w = [];

case ‘yy’; w = [];

case ‘yxx’; w = [];

case ‘yxy’; w = [];

case ‘yyy’; w = [];

end

end

end

end

Table 19: Function description of SinhaMaloDeb2014TP9.m.

To solve Example 5.2, type/copy the following codes in a new command window and run it
(Or run demon4thway.m to see one of solvers to solve Example 5.2).

clc; clear; close all; % line 1
func = ’LuDebSinha2016b_ver4’; % line 2
dim = [1 1 4 0]; % line 3
pars.xy = [1;1]; % line 4
pars.lam = 1; % line 5

20

pars.check = 1; % line 6
SolNo = 2; % choose the solve’ % line 7
Solvers = {’SNLLVF’,’SNQVI’,’SNKKT’}; % line 8
solver = str2func(Solvers{SolNo}); % line 9
Out = solver(func, dim, pars); % line 10

Since the m-file has missing derivatives of f in Table 19, we need set pars.check = 1 to
complete them. Note that solvers will only complete the derivatives of f since all required
derivatives of F,G and g are existed.

5.3 Examples with parameters or extra data

As mentioned above, four ways to construct the m-file share the similar citation format, i.e.,

func = @(x,y,keyf,keyxy)example_name(x,y,keyf,keyxy).

There are four inputs x, y, keyf and keyxy. However, apart from containing these four inputs,
some examples also involve parameters or extra data. In such case, one could construct the
m-file with the citation format,

(5.2) func = @(x,y,keyf,keyxy)example_name(x,y,keyf,keyxy,data).

Here, data should be defined or given before it is used. Then put the data into pars as

pars.data = data.

Note that if there is data that is substituted in (5.2), then this data must be integrated into
pars, namely, pars.data = data. We use two examples to demonstrate how SNLLVF, SNKKT
and SNQVI to solve problems with parameters or extra data. Or, alternatively, open folder
BiOpt-Solvers and run Matlab m-file demon5thway.m to see this.

Example 5.3 Henrion and Surowiec 2011 [7] defined one example as follows,

F (x, y) := x2 + cy
f(x, y) := 0.5y2 − xy,

where c is a parameter.

A standard way is to construct the m-file that is similar to DempeDutta2012Ex24 ver1.m in
Table 13, or DempeDutta2012Ex24 ver2.m in Table 15 or DempeDutta2012Ex24 ver3.m in Ta-
ble 18. But c should be given inside, see Table 21.

function w = HenrionEtal2011(x,y,keyf,keyxy)

c = 1;

if nargin<4 || isempty(keyxy)

switch keyf

case ‘F’; w = x^2 + c*y;

case ‘G’; w = [];

case ‘f’; w = 0.5*y^2-x*y;

case ‘g’; w = [];

21

end

end

Table 21: Function description of HenrionSurowiec2011.m.

e) The fifth way. However, it is quite inconvenient that changing the value of c because
every time you need open the file HenrionEtal2011.m to alter c. An easy operation is to
construct the m-file as in Table 22.

function w = HenrionEtal2011_ver5(x,y,keyf,keyxy,c)

if nargin<4 || isempty(keyxy)

switch keyf

case ‘F’; w = x^2 + c*y;

case ‘G’; w = [];

case ‘f’; w = 0.5*y^2-x*y;

case ‘g’; w = [];

end

end

Table 22: Function description of HenrionSurowiec2011 ver5.m.

Then, to solve Example 5.3, type (or copy) the following codes in a new command window and
run it (Or run demon5thway.m to see one of solvers to solve Example 5.3). Line 3 redefines
the function HenrionEtal2011_ver5 with 5 inputs as a new function func with 4 inputs. The
given data is also integrated into pars by line 6. Clearly, in this way, altering c becomes very
easy and convenient.

clc; clear; close all; % line 1
c = 1; % line 2
func = @(x,y,keyf,keyxy)HenrionEtal2011_ver5(x,y,keyf,keyxy,c); % line 3
dim = [1 1 0 0]; % line 4
pars.check = 1; % line 5
pars.data = c; % line 6
Out = SNLLVF(func, dim, pars); % line 7

The second example involves amounts of data. To make the function construction more
clear, it is highly suggested that one separate the data and the function.

Example 5.4 An et al. 2009 [2] defined one example as follows,

F (x, y) := 1
2z
>Hz + c>z

G(x, y) :=

 −x
−y

Ax+By + d


f(x, y) := y>Px+ 1

2y
>Qy + q>y

g(x, y) := Dx+ Ey + b

where z = (x>, y>)> and H, c, A, B, d, P , Q, q, D, E, b respectively are given data.

22

First, we create a file AnEtal2009Data.m to store all data: H, c, A, B, d, P , Q, q, D, E, b.
The corresponding codes are presented in Table 24.

function Data = AnEtal2009_data

Data.H = [-3.8 4.4 1.2 -2.2; 4.4 -2.2 0.6 1.8;

1.2 0.6 0.0 0.4; -2.2 1.8 0.4 0.0];

Data.c = [935.74474; 87.53654; 121.96196; 299.24825];

Data.A = [0.00000 3.88889;-2.00000 8.77778];

Data.B = [4.88889 7.44444; -5.11111 0.88889];

Data.d = [-61.57778; -0.80000];

Data.P = [-17.85000 6.57500; 30.32500 30.32500];

Data.Q = [21.10204,11.81633;11.81633,-14.44898];

Data.q = [-18.21053;13.05263];

Data.D = [5.00000 7.44444; -8.33333 3.00000; -8.66667 -8.55556; 6.44444 -5.11111];

Data.E = [3.88889 1.77778; 6.88889 6.11111; -5.33333 -7.00000; 1.44444 4.44444];

Data.b = [-39.62222;-60.00000;72.37778;-17.28889];

end

Table 24: Function description of AnEtal2009 data.m.

Then create the function file AnEtal2009_ver5.m to define the Example 5.4 as in Table 25.

function w=AnEtal2009_ver5(x,y,keyf,keyxy,data)

if nargin<4 || isempty(keyxy)

switch keyf

case ‘F’; w = [x’ y’]*(Data.H*[x; y]/2+Data.c);

case ‘G’; w = [-x;-y;Data.A*x+Data.B*y+Data.d];

case ‘f’; w = y’*(Data.P*x+Data.q)+y’*Data.Q*y/2;
case ‘g’; w = Data.D*x+Data.E*y+Data.b;

end

else

switch keyf

case ‘F’
z = Data.H*[x; y]+Data.c;

switch keyxy

case ‘x’ ; w = z(1:2,:);

case ‘y’ ; w = z(3:4,:);

case ‘xx’; w = Data.H(1:2,1:2);

case ‘xy’; w = Data.H(3:4,1:2);

case ‘yy’; w = Data.H(3:4,3:4);

end

case ‘G’
switch keyxy

case ‘x’ ; w = [-eye(2);zeros(2);Data.A];

case ‘y’ ; w = [zeros(2);-eye(2);Data.B];

case ‘xx’; w = zeros(12,2);

case ‘xy’; w = zeros(12,2);

case ‘yy’; w = zeros(12,2);

end

case ‘f’
switch keyxy

case ‘x’ ; w = Data.P’*y;
case ‘y’ ; w = Data.P*x+Data.q+(Data.Q+Data.Q’)*(y/2);
case ‘xx’; w = zeros(2);

23

case ‘xy’; w = Data.P;

case ‘yy’; w = (Data.Q+Data.Q’)/2;
case ‘yxx’; w = [];

case ‘yxy’; w = [];

case ‘yyy’; w = [];

end

case ‘g’
switch keyxy

case ‘x’ ; w = Data.D;

case ‘y’ ; w = Data.E;

case ‘xx’; w = zeros(8,2);

case ‘xy’; w = zeros(8,2);

case ‘yy’; w = zeros(8,2);

case ‘yxx’; w = [];

case ‘yxy’; w = [];

case ‘yyy’; w = [];

end

end

end

end

Table 25: Function description of AnEtal2009 data.m.

Finally, to solve Example 5.4, type (or copy) the following codes in a new command window
and run it (Or run demon5thway.m to see one of solvers to solve Example 5.4). Line 3 redefines
the function AnEtal2009_ver5 with 5 inputs as a new function func with 4 inputs. The given
data is also integrated into pars by line 7. Clearly, in this way, altering data becomes very
convenient.

clc; clear; close all; % line 1
data = AnEtal2009_data; % line 2
func = @(x,y,keyf,keyxy)AnEtal2009_ver5(x,y,keyf,keyxy,data); % line 3
dim = [2 2 6 4]; % line 4
pars.xy = [1;1;1;1]; % line 5
pars.lam = 1; % line 6
pars.data = data; % line 7
Out = SNLLVF(func, dim, pars); % line 8

5.4 Importance of pars.xy and pars.lam

As presented in Table 11, two parameters: the starting points pars.xy and the penalty pa-
rameter pars.lam would have an influence on the performance of SNLLVF, SNKKT and SNQVI.
The default one for the starting points is zero, namely, pars.xy = 0. While, since bilevel op-
timisation is often non-convex and the three solvers are based on semi-smooth Newton method
whose performance generally relies on the starting points, it is better to set a good pars.xy

rather than always being 0.

In addition, according to [5, 12, 11], the construction of SNLLVF, SNKKT and SNQVI involves
an important penalty parameter, which somewhat decides the performance of those solvers.
For instance, we apply them into solving Example Colson2002BIPA4 (defined in [3]) from

24

2-3 2-2 2-1 20 21 22 23

pars.lam

60

70

80

90

100

110

F
(x

,y
)

2-3 2-2 2-1 20 21 22 23

pars.lam

0

5

10

15

20

f(
x,

y)

SNLLVF
SNKKT
SNQVI
Known

2-3 2-2 2-1 20 21 22 23

pars.lam

0

0.5

1

1.5

T
im

e

2-3 2-2 2-1 20 21 22 23

pars.lam

0

50

100

150

Ite
r

Figure 4: Performance of SNLLVF, SNKKT and SNQVI on solving example Colson2002BIPA4.

Nonlinear in BOLIB under different pars.lam. Results are reported in figure 4. Obviously,
pars.lam more or less has an impact on their performance.

5.5 Summary

To end this section, we would like to summarize some key rules of using BiOpt solvers.

1) SNLLVF generally performs faster than SNKKT and SNQVI because it only needs 1st and
2nd order derivatives of involved functions, while the latter two still need 3rd order
derivatives of f or g.

2) Even though it is very flexible to create the m-file of an example, such as ways in Tables
13, 15, 18 or 19, it is highly suggested to use the way as in Table 18 where all order
derivatives described in Table 12 are given. Because in this way, each solver do not need
to check the completeness and thus will save computational time.

3) When users definitely ensure that the created m-file covers all derivatives described in
Table 12, it could set pars.check = 0. However, for this case, setting pars.check = 1

actually will not take much time to check the completeness because it is already complete,
which means always setting pars.check = 1 is a good choice or just in case there are
some derivatives are missing. This would make solvers solving problems more stably,
namely, with less errors.

4) Adjusting the parameter pars.lam or choosing proper starting points pars.xy would
render solvers better performance in terms of computational time or quality of solutions.

25

References

[1] E. Aiyoshi and K. Shimizu, A solution method for the static constrained Stackelberg
problem via penalty method, IEEE Transactions on Automatic Control, 29, 1111-1114,
1984.

[2] L.T.H. An, P.D. Tao, N.N. Canh and N.V. Thoai, DC programming techniques for solving
a class of nonlinear bilevel programs, Journal of Global Optimization, 44(3), 313-337, 2009.

[3] B. Colson, BIPA (Bilevel Programming with Approximation Methods): Software guide
and test problems, Technical report, 2002.

[4] S. Dempe and J. Dutta, Is bilevel programming a special case of a mathematical program
with complementarity constraints? Mathematical programming, 131(1-2), 37-48, 2012.

[5] A. Fischer A.B. Zemkoho and S. Zhou, Semismooth Newton-type method for bilevel op-
timization: Global convergence and extensive numerical experiments, Technical Report,
2019.

[6] S. Franke, P. Mehlitz and M. Pilecka, Optimality conditions for the simple convex bilevel
programming problem in Banach spaces, Optimization, 67:2, 237-268, 2018.

[7] R. Henrion and T. Surowiec, On calmness conditions in convex bilevel programming,
Applicable Analysis, 90(6), 951-970, 2011.

[8] Z.C. Lu, K. Deb, and A. Sinha, Robust and reliable solutions in bilevel optimization
problems under uncertainties, COIN Report 2016026, Retrived on 19 November 2017
from http://www.egr.msu.edu/ kdeb/papers/c2016026.pdf.

[9] K. Shimizu, Y. Ishizuka and J.F. Bard, Nondifferentiable and two-level mathematical
programming, Dordrecht: Kluwer Academic Publishers, 1997.

[10] S. Zhou, A.B. Zemkoho, and A. Tin. BOLIB 2019: Bilevel Optimization Library of
Test Problems Version 2. available at https://www.researchgate.net/publication/

325120369, 2019.

[11] S. Zhou, and A.B. Zemkoho. Value Function Approach to Quasi-variational Inequali-
ties with Applications to Lipschitzian Stability and Numerical Methods for Optimization
Problems. Technical report, 2019.

[12] S. Zhou, and A.B. Zemkoho. Theoretical and numerical comparison of the Karush-Kuhn-
Tucker and value function reformulations in bilevel optimization. Technical report, 2019.

26

https://www.researchgate.net/publication/325120369
https://www.researchgate.net/publication/325120369

	Introduction
	GetDerivatives: A tool to calculate derivatives
	Format of derivatives
	How to use GetDerivatives

	Tools to process an optimal-value function
	SolOVF computes the function value
	PlotOVF plots the function

	Bilevel optimization examples from BOLIB
	Nonlinear examples
	Linear examples
	Simple examples

	BiOpt solvers: SNLLVF, SNKKT and SNQVI
	Description of inputs and outputs
	Examples and func
	Examples with easy calculations of derivatives
	Examples with complicated calculations of derivatives

	Examples with parameters or extra data
	Importance of pars.xy and pars.lam
	Summary

